Slajdy będą na stronie: http://takao.pl/ dydaktyka/wbuw/cywilizacyjne/

Amyloidozy, czyli choroby konformacyjne

Molekularne podstawy chorób cywilizacyjnych i strategie terapii

17 maja 2023 r.

Takao Ishikawa

Amyloidozy

Barwienie czerwienią Kongo (CR), obserwacja w mikroskopie świetlnym

images.google.com

Amyloid

Barwienie CR, obserwacja w mikroskopie świetlnym i polaryzacyjnym

Krampert i wsp. (2000) Chem. Biol.

Amyloid protein	Precursor	organ restricted (L)	Syndrome or involved tissues		
AL	Immunoglobulin light chain	S, L	Primary		
			Myeloma-associated		
AH	Immunoglobulin heavy chain	S, L	Primary		
			Myeloma-associated		
$A\beta_2 M$	β_2 -microglobulin	S	Hemodialysis-associated		
		T5	Joints		
ATTR	Transthyretin	S	Familial		
			Senile systemic		
		Ľ5	Tenosynovium		
AA	(Apo)serum AA	S	Secondary, reactive		
AApoAI	Apolipoprotein AI	S	Familial		
		L	Aorta, meniscus		
AApoAII	Apolipoprotein AII	S	Familial		
AApoAIV	Apolipoprotein AIV	S	Sporadic, associated with aging		
AGel	Gelsolin	S	Familial (Finnish)		
ALys	Lysozyme	S	Familial		
AFib	Fibrinogen a-chain	S	Familial		
ACys	Cystatin C	S	Familial		
ABri	ABriPP	S	Familial dementia, British		
ALect2	Leukocyte chemotactic factor 2	S	Mainly kidney		
ADan*	ADanPP	L	Familial dementia, Danish		
$A\beta$	$A\beta$ protein precursor ($A\beta PP$)	L	Alzheimer's disease, aging		
APrP	Prion protein	L	Spongioform encephalopathies		
ACal	(Pro)calcitonin	L	C-cell thyroid tumors		
AIAPP	Islet amyloid polypeptide**	L	Islets of Langerhans		
			Insulinomas		
AANF	Atrial natriuretic factor	L	Cardiac atria		
APro	Prolactin	L	Aging pituitary		
			Prolactinomas		
AIns	Insulin	L	Iatrogenic		
AMed	Lactadherin	L	Senile aortic, media		
AKer	Kerato-epithelin	L	Cornea, familial		
ALac	Lactoferrin	L	Cornea		
AOaap	Odontogenic ameloblast-associated protein	L	Odontogenic tumors		
ASemI	Semenogelin I	L	Vesicula seminalis		

Sipe i wsp. (2010) Amyloid

Amyloid protein	Precursor	Systemic (S) or localized, organ restricted (L)	Syndrome or involved tissues		
AL	Immunoglobulin light chain	S, L	Primary		
			Myeloma-associated		
AH	Immunoglobulin heavy chain	S, L	Primary		
			Myeloma-associated		
$A\beta_2M$	β_2 -microglobulin	S	Hemodialysis-associated		
		T5	Joints		
ATTR	Transthyretin	S	Familial		
			Senile systemic		
		T5	Tenosynovium		
AA	(Apo)serum AA	S	Secondary, reactive		
AApoAI	Apolipoprotein AI	S	Familial		
		L	Aorta, meniscus		
AApoAII	Apolipoprotein AII	S	Familial		
AApoAIV	Apolipoprotein AIV	S	Sporadic, associated with aging		
AGel	Gelsolin	S	Familial (Finnish)		
ALys	Lysozyme	S	Familial		
AFib	Fibrinogen a-chain	S	Familial		
ACys	Cystatin C	S	Familial		
ABri	ABriPP	S	Familial dementia, British		
ALect2	Leukocyte chemotactic factor 2	S	Mainly kidney		
ADan*	ADanPP	L	Familial dementia, Danish		
	$A\beta$ protein precursor ($A\beta PP$)	L	Alzheimer's disease, aging		
APrP	Prion protein	L	Spongioform encephalopathies		
ACal	(Pro)calcitonin	L	C-cell thyroid tumors		
АІАРР	Islet amyloid polypeptide**	L	Islets of Langerhans		
			Insulinomas		
AANF	Atrial natriuretic factor	L	Cardiac atria		
APro	Prolactin	L	Aging pituitary		
			Prolactinomas		
AIns	Insulin	L	Iatrogenic		
AMed	Lactadherin	L	Senile aortic, media		
AKer	Kerato-epithelin	L	Cornea, familial		
ALac	Lactoferrin	L	Cornea		
AOaap	Odontogenic ameloblast-associated protein	L	Odontogenic tumors		
ASemI	Semenogelin I	L	Vesicula seminalis		

Sipe i wsp. (2010) Amyloid

IAPP

- Islet Amyloid Polypeptide, inaczej amylina
- Wydzielana w stosunku 100:1 z insuliną z komórek B trzustki (insulina:amylina)
- Spowalnia pobór glukozy z jelita cienkiego i zapobiega nagłemu wzrostowi stężenia glukozy w krwiobiegu
- AIAPP (amyloid IAPP) jest cytotoksyczny
- AIAPP może wymuszać zmiany konformacyjne IAPP (Mukherjee i wsp. (2017) *Journal of Experimental Medicine*)

Jiménez i wsp. (2002) PNAS

Aß: choroba Alzheimera

Querfurth i LaFerla (2010) NEJM

Lührs i wsp. (2005) PNAS

Porphyromonas gingivalis i gingipaina (proteaza)

llievski i wsp. (2018) PLoS ONE

llievski i wsp. (2018) PLoS ONE

Cechy amyloidu

- Identyfikacja CR
- Międzycząsteczkowa β-kartka
- Utrata funkcji cząsteczki białka
- Cytotoksyczność

Nazwa	PrP ^C	PrPSc		
Struktura				
Dominująca struktura drugorzędowa	a-heliks	β-kartka		
Rozpuszczalne w środowisku wodnym	Tak	Nie		
Podatne na proteolizę	Tak	Nie		
Morfologia	200 nm	<u>200 mm</u>		

Efekty delecji genu PRNP

- Częstsze przerwy snu
- Gorsza pamięć krótkoi długoterminowa
- Wycofanie społeczne

- Upośledzenie syntezy otoczki mielinowej
- Brak odpowiedzi na MK-801

Oddziaływanie PrP z NR2

Khosravani i wsp. (2008) J. Cell Biol.

Fang i wsp. (2018) PLoS Pathogens

Neuronal death induced by misfolded prion protein is due to NAD⁺ depletion and can be relieved *in vitro* and *in vivo* by NAD⁺ replenishment

Minghai Zhou,¹ Gregory Ottenberg,^{1,*} Gian Franco Sferrazza,^{1,#} Christopher Hubbs,² Mohammad Fallahi,³ Gavin Rumbaugh,² Alicia F. Brantley⁴ and Corinne I. Lasmézas¹

The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD⁺) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD⁺ followed by decreased ATP production, and are completely rescued by treatment with NAD⁺ or its precursor nicotinamide because of restoration of physiological NAD⁺ levels. Toxic prion protein-induced NAD⁺ depletion results from

Kamath i wsp. (2010) Hum. Mutat.

Choroby prionowe

- Choroba Creutzfeldta-Jakoba (CJD)
- Rodzinna śmiertelna bezsenność (FFI)
- Zespół Gerstmanna-Sträusslera-Scheinkera (GSS)

• Kuru

ORIGINAL ARTICLE

A Novel Protective Prion Protein Variant that Colocalizes with Kuru Exposure

LETTER

doi:10.1038/nature14510

A naturally occurring variant of the human prion protein completely prevents prion disease

Emmanuel A. Asante¹, Michelle Smidak¹, Andrew Grimshaw¹, Richard Houghton¹[†], Andrew Tomlinson¹, Asif Jeelani¹, Tatiana Jakubcova¹, Shyma Hamdan¹, Angela Richard–Londt¹, Jacqueline M. Linehan¹, Sebastian Brandner¹, Michael Alpers^{1,2}, Jerome Whitfield^{1,2}, Simon Mead¹, Jonathan D. F. Wadsworth¹ & John Collinge¹

Mammalian prions, transmissible agents causing lethal neuro- identified in the kuru-exposed population and V127 was always seen

Asante i wsp. (2015) Nature

- Polimorfizm V127 zapewnia efekt ochronny przed chorobami prionowymi
- U homozygot 127VV jest on tak samo skuteczny jak u myszy PrP-null

Choroba Creutzfeldta-Jakoba

·fCJD (familial)

- forma dziedziczna
- iCJD (infectious/iatrogenic)
 - forma zakaźna m.in. z powodu preparatów hormonów wzrostu
- •vCJD (variant)
 - infekcja prionami bydlęcymi?
- sCJD (spontaneous)
 - spontaniczna forma choroby

FILD-U, not all brain regions examined in all cases exhibited pathological TDP-43.

These studies identify TDP-43 as the major disease protein in the signature UBIs of FTLD-U and ALS. Although pathologically altered TDP-43 proteins were present in all sporadic and familial FTLD-U as well as ALS cases, there were subtle differences in these abnormal TDP-43 variants among the three FTLD-U subtypes, which may be the result of similar but not identical pathogenic mechanisms. The differential distribution of UBIs detected by ubiquitin antibodies in FTLD-U subtypes (*18*) supports this view.

TDP-43 is a ubiquitously expressed, highly conserved nuclear protein (24) that may be a transcription repressor and an activator of exon skipping (21, 25, 26) as well as a scaffold for nuclear bodies through interactions with survival motor neuron protein (27). TDP-43 is normally localized primarily to the nucleus, but our data indicate that, under pathological conditions in FTLD-U, TDP-43 is eliminated from nuclei of UBI-bearing neurons, a consequence of which may be a loss of TDP-43 nuclear functions. Moreover, nuclear UBIs are rare in sporadic FTLD-U because most pathological TDP-43 accumulates in neuronal cell bodies or their

Infectious Prions in the Saliva and Blood of Deer with Chronic Wasting Disease

Candace K. Mathiason,¹ Jenny G. Powers,³ Sallie J. Dahmes,⁴ David A. Osborn,⁵ Karl V. Miller,⁵ Robert J. Warren,⁵ Gary L. Mason,¹ Sheila A. Hays,¹ Jeanette Hayes-Klug,¹ Davis M. Seelig,¹ Margaret A. Wild,³ Lisa L. Wolfe,⁶ Terry R. Spraker,^{1,2} Michael W. Miller,⁶ Christina J. Sigurdson,¹ Glenn C. Telling,⁷ Edward A. Hoover^{1*}

A critical concern in the transmission of prion diseases, including chronic wasting disease (CWD) of cervids, is the potential presence of prions in body fluids. To address this issue directly, we exposed cohorts of CWD-naïve deer to saliva, blood, or urine and feces from CWD-positive deer. We found infectious prions capable of transmitting CWD in saliva (by the oral route) and in blood (by transfusion). The results help to explain the facile transmission of CWD among cervids and prompt caution concerning contact with body fluids in prion infections.

The prion diseases, or transmissible spongiform encephalopathies (TSEs), are chronic, degenerative, neurological diseases with uniformly fatal outcomes. TSEs are characterized by the conversion of the normal cellular prion protein (PrP^c) to an aberrant insoluble partially protease-resistant isoform (PrP^{res}). CWD, a transmissible spongiform encephalopathy of cervids (deer, elk, and moose), was first observed in the 1960s in captive deer and free-ranging deer and elk in northeastern Colorado and southeastern

www.sciencemag.org SCIENCE VOL 314 6 OCTOBER 2006

FILD-U, not all brain regions examined in all cases exhibited pathological TDP-43.

These studies identify TDP-43 as the major disease protein in the signature UBIs of FTLD-U and ALS. Although pathologically altered TDP-43 proteins were present in all sporadic and familial FTLD-U as well as ALS cases, there were subtle differences in these abnormal TDP-43 variants among the three FTLD-U sub-

Infectious Prions in the Saliva and Blood of Deer with Chronic Wasting Disease

Prions Adhere to Soil Minerals and Remain Infectious

Christopher J. Johnson^{1,2}, Kristen E. Phillips³, Peter T. Schramm³, Debbie McKenzie², Judd M. Aiken^{1,2}, Joel A. Pedersen^{3,4*}

1 Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, Wisconsin, United States of America, **2** Department of Animal Health and Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, Wisconsin, United States of America, **3** Molecular and Environmental Toxicology Center, University of Wisconsin Madison, Wisconsin, United States of Science, University of Wisconsin Madison, Wisconsin, United States of America, **3** Molecular and Environmental Toxicology Center, University of Wisconsin Madison, Wisconsin, United States of America, **4** Department of Soil Science, University of Wisconsin Madison, Wisconsin, United States of America States of America

OPEN ORCESS Freely available online

PLOS pathogens

Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles

Christopher J. Johnson^{1,2}, Joel A. Pedersen³, Rick J. Chappell⁴, Debbie McKenzie², Judd M. Aiken^{1,2*}

1 Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, **2** Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, **3** Department of Soil Science and Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, **4** Biostatistics and Medical Informatics, University of Wisconsin Medical School, Madison, Wisconsin, United States of America, **4** Biostatistics and Medical Informatics, University of Wisconsin Medical School, Madison, Wisconsin, United States of America, **4** Biostatistics and Medical Informatics, University of Wisconsin Medical School, Madison, Wisconsin, United States of America

Johnson i wsp. (2006; 2007), PLoS pathogens

Choroby psychiczne

Choroby psychiczne – statystyki

- Narodowy Program Ochrony Zdrowia Psychicznego (1990-2010)
 - opieka ambulatoryjna: $1629 \rightarrow 3655$ na 100 tys. ludności opieka stacjonarna: $362 \rightarrow 548$ na 100 tys. ludności
- Narodowy Program Ochrony Zdrowia Psychicznego (2017-2022)
- Dane Eurostatu
 - w Islandii, Norwegii i Szwecji, 27% dorosłej populacji doświadcza w ciągu roku epizodu choroby psychicznej (użycie substancji psychoaktywnych, psychozy, depresje, nerwice i zaburzenia w zakresie odżywiania)

Choroby psychiczne – statystyki

W Polsce systematycznie wzrasta liczba osób leczonych z powodu zaburzeń psychicznych, co więcej – przewidywane jest jeszcze wyraźniejsze kształtowanie się tej tendencji w przyszłości (ze względu na zwiększenie poziomu społecznych zagrożeń dla zdrowia psychicznego, takich jak: bezrobocie, ubóstwo, przemoc, rozluźnienie więzi społecznych) – *Narodowy Program Ochrony Zdrowia Psychicznego*

- Przynajmniej jedno zaburzenie (z 18 definiowanych w klasyfikacjach ICD-10 i DSM-IV) u 23,4% osób
- Co czwarty Polak doświadczył więcej niż jednego z zaburzeń, a co dwudziesty piąty – trzech lub więcej
 - Najczęstsze to przyjmowanie substancji (12,8%), w tym nadużywanie i uzależnienie od alkoholu (11,9%) oraz nadużywanie i uzależnienie od narkotyków (1,4%)
 - Zaburzenia nerwicowe, wśród których do najczęstszych należą fobie specyficzne (4,3%) i fobie społeczne (1,8%)

Choroby psychiczne – statystyki

Na całym świecie co czwarty człowiek w pewnym momencie swojego życia zostanie dotknięty zaburzeniem psychicznym lub neurologicznym.

Około 450 milionów ludzi w tej chwili cierpi z tych właśnie powodów.

Stres? Choroba cywilizacyjna?

Najczęściej spotykane zaburzenia psychiczne

- Psychotyczne omamy, urojenia, znaczne upośledzenie w percepcji rzeczywistości
 - nieprawidłowe wnioski dotyczące rzeczywistości zewnętrznej
 - schizofrenię, zaburzenia schizoafektywne, psychozy.

Zaburzenia afektywne

- okresowo występujące zaburzenia nastroju, emocji i aktywności

 mogą mieć charakter epizodyczny, okresowy lub przewlekły pod postacią uporczywych, ale lżejszych zaburzeń nastroju

 - Choroba afektywna jednobiegunowa występuje, gdy u chorego pojawiają się jedynie zaburzenia depresyjne lub maniakalne.

- Choroba afektywna dwubiegunowa charakteryzuje się występowaniem, zarówno depresji, jak i manii. Ten typ choroby ma charakter nawracający.

• Zaburzenia lękowe – potocznie nerwice.

 - zespoły dysfunkcji narządów, psychogenne zaburzenia emocjonalne, zakłócenia procesów psychicznych i patologiczne formy zachowania występujące w tym samym czasie i powiązane ze sobą wzajemnie.

 charakterystyczne jest zachowanie sądu realizującego, czyli chory zdaje sobie sprawę z absurdalności swoich zachowań.

- ta cecha – krytycyzm wobec swoich objawów – różni nerwicę od psychozy.

Czynniki ryzyka: środowiskowe i genetyczne

Udział czynnika genetycznego w prawdopodobieństwie rozwoju schizofrenii

Arnedo i wsp. (2014) Am J Psych

Neuroprzekaźniki

acetylocholina

Neuroprzekaźniki

Leczenie

- Antypsychotyczne (neuroleptyki) głównie blokują neurony dopaminowe, w mniejszym stopniu serotoninowe i pozostałe
- Antymaniakalne np. lit, karbamazepina, kwas walproinowy
- Antydepresyjne np. inhibitory monoaminooksydazy (MAOIs), trójcykliczne leki antydepresyjne (TCAs), inhibitory zwrotnego wychwytu serotoniny (SSRIs), inhibitory zwrotnego wychwytu serotoniny i noradrenaliny (SNRIs)

Lit

- powoduje podwyższenie stężenia białek cytoprotekcyjnych (Bcl-2)
- hamuje monofosfatazę inozytolu (IMPase)
- hamuje kinazę syntazy glikogenu 3 (GSK-3)

Poszukiwanie korelacji genetycznych

- Metaanaliza GWAS (genome-wide association studies) dla pięciu wybranych zaburzeń psychicznych – schizofrenii, BPD, choroby depresyjnej, ADHD i autyzmu – z 19 krajów europejskich
 - 1 250 922 autosomalnych SNP. W pięciu loci znaleziono silne korelacje, z których dwa udało się skorelować z genami CACNA1C i CACNB2 kodującymi podjednostki kanałów jonowych bramkowanych napięciem elektrycznym

Disorder	SNP	CHR	Position	A1	Adjusted beta	SE adjusted beta	Unadjusted beta	SE unadjusted beta	Adjusted p value	Unadjusted p value	nearestGene
SCZ	rs3764002	12	108618630	С	0.083	0.012	0.054	0.011	1.94E - 12	6.05E - 07	WSCD2
SCZ	rs6095357	20	47523865	А	-0.069	0.011	-0.048	0.010	1.17E - 10	1.21E - 06	ARFGEF2
SCZ	rs7790864	7	28478625	А	-0.062	0.011	-0.044	0.010	6.33E - 09	7.18E - 06	CREB5
SCZ	rs1054972	19	1852582	А	0.076	0.013	0.053	0.012	6.42E - 09	1.32E - 05	KLF16
SCZ	rs2867673	7	71752652	Т	0.060	0.010	0.049	0.010	9.44E - 09	4.11E - 07	CALN1
SCZ	rs6564668	16	79457393	С	-0.060	0.010	-0.038	0.010	1.05E - 08	7.94E - 05	RP11-467I7.1
SCZ	rs11922765	3	95047279	G	-0.060	0.010	-0.044	0.010	1.22E - 08	4.36E - 06	RPS18P6
SCZ	rs2973038	5	37833781	С	0.066	0.012	0.051	0.011	1.28E - 08	1.72E - 06	GDNF
SCZ	rs10903945	10	363275	С	0.057	0.010	0.040	0.010	3.13E - 08	3.30E - 05	DIP2C
SCZ	rs10282935	8	38703797	А	0.058	0.011	0.041	0.010	3.97E - 08	3.17E - 05	TACC1
SCZ	rs6701877	1	174015259	G	-0.096	0.014	-0.073	0.013	1.47E - 11	2.37E - 08	RP11-160H22.3
SCZ	rs7372313	3	135872958	G	-0.069	0.010	-0.062	0.010	4.26E - 11	1.54E - 10	MSL2
SCZ	rs1765142	11	30378559	С	0.065	0.011	0.058	0.010	1.54E - 09	1.13E - 08	ARL14EP
SCZ	rs55646993	7	105017864	G	-0.062	0.010	-0.053	0.010	2.23E - 09	3.83E - 08	SRPK2
SCZ	rs150437760	14	59981768	А	0.131	0.024	0.121	0.022	3.71E - 08	4.58E - 08	CCDC175
BIP	rs12554512	9	23352293	Т	-0.083	0.014	-0.066	0.014	1.55E - 09	1.28E - 06	ELAVL2
BIP	rs6891181	5	80849101	Т	-0.081	0.014	-0.075	0.014	1.49E - 08	1.27E - 07	SSBP2
BIP	rs12268910	10	111878510	Т	-0.097	0.018	-0.091	0.018	3.29E - 08	2.73E - 07	ADD3
MD	rs11697370	20	47731767	Т	-0.031	0.005	-0.023	0.005	3.31E - 09	3.53E - 06	STAU1
MD	rs27732	5	87992576	А	0.034	0.005	0.031	0.005	1.22E - 11	1.87E - 10	MEF2C
MD	rs1806153	11	31850105	Т	0.037	0.006	0.036	0.006	8.78E - 10	1.18E - 09	RCN1
MD	rs1354115	9	2983774	А	0.029	0.005	0.028	0.005	1.72E - 08	2.37E - 08	CARM1P1
MD	rs301799	1	8489302	Т	-0.028	0.005	-0.026	0.005	2.49E - 08	4.68E - 08	RERE
ADHD	rs78648104	6	50683009	Т	0.136	0.023	0.124	0.025	4.31E - 09	3.60E - 07	TFAP2D
ADHD	rs2244336	10	8831827	С	0.071	0.013	0.069	0.014	3.81E - 08	3.67E - 07	ENSG00000270234
ADHD	rs12410444	1	44188719	А	0.107	0.014	0.106	0.015	4.23E - 15	3.85E - 13	ST3GAL3
ADHD	rs13023832	2	215219808	А	0.133	0.020	0.117	0.021	1.23E – 11	1.62E - 08	SPAG16
ADHD	rs281320	15	47769424	Т	-0.080	0.013	-0.074	0.013	1.84E - 10	3.14E - 08	SEMA6D
AUT	rs10099100	8	10576775	С	0.084	0.014	0.084	0.015	1.20E - 09	1.07E - 08	SOX7

Czynniki ryzyka u osób chorych na COVID-19

Variable	OR (95% CI)				
Age, y					
18-44	1 [Reference]				
≥75	35.72 (22.99-55.52)				
65-74	16.54 (10.60-25.82)				
55-64	7.74 (4.95-12.10)				
45-54	3.89 (2.40-6.30)				
Schizophrenia spectrum disorder	2.67 (1.48-4.80)				
Male sex	1.69 (1.43-2.00)				
Heart failure	1.60 (1.24-2.06)				
Other race vs White race ^b	1.47 (1.19-1.80)				
White race vs Black race	1.41 (1.10-1.81)				
Hypertension	1.38 (1.12-1.70)				
Asian race vs White race	1.28 (0.94-1.75)				
Diabetes	1.27 (1.07-1.51)				
Never smoker vs current smoker	1.27 (0.84,1.93)				
Chronic kidney disease	1.23 (0.98-1.55)				
Mood disorder diagnosis	1.14 (0.87-1.49)				
White race vs mixed race	1.08 (0.60-1.97)				
Cancer	1.01 (0.85-1.22)				
Former smoker vs never smoker	1.00 (0.93-1.22)				
Myocardial infarction	1.00 (0.81-1.22)				
Anxiety disorder	0.96 (0.65-1.41)				
Chronic obstructive pulmonary disease	0.93 (0.77-1.12)				

Nemani i wsp. (2021) JAMA Psych